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Abstract 

 
The significant aim of this research has always been to evaluate the mechanism for efficient 
and inherently aware usage of vitality in-home devices, thus improving the information of 
smart metering systems with regard to the usage of selected homes and the time of use. 
Advances in information processing are commonly used to quantify gigantic building activity 
data steps to boost the activity efficiency of the building energy systems. Here, some smart 
data mining models are offered to measure, and predict the time series for energy in order to 
expose different ephemeral principles for using energy. Such considerations illustrate the use 
of machines in relation to time, such as day hour, time of day, week, month and year 
relationships within a family unit, which are key components in gathering and separating the 
effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is 
necessary to determine the multiple relations through the usage of different appliances from 
simultaneous information flows. In comparison, specific relations among interval-based 
instances where multiple appliances use continue for certain duration are difficult to determine. 
In order to resolve these difficulties, an unsupervised energy time-series data clustering and a 
frequent pattern mining study as well as a deep learning technique for estimating energy use 
were presented. A broad test using true data sets that are rich in smart meter data were 
conducted. The exact results of the appliance designs that were recognized by the proposed 
model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural 
Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 
99.61%, for 25%, 50%, and 75%, respectively. 
 
 
Keywords: Behavioral Analytics, Big Data Mining, Clustering Analysis, CNN, Energy 
Consumption, Energy Prediction, LSTM. 
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1. Introduction 

The measure of the consumption of household energy consumption is a substantial 
proportion of the usage of maximum energy around the world. The amount of use of 
household energy for maximum use of energy in certain European and American countries is 
approximately 30 % [1-2]. The rapid development of the economy and populations in India 
and China in the last decades has led to strong demand for energy, which has played a key role 
in the use of household energy consumption. The consumption of household energy thus 
contributed to real natural problems. For example, nearly 38 % of US carbon flows have their 
origin in the immediate usage of family units in the United States [3]. The consumption of 
energy in various households indicates large variability since different factors usually affect 
their use of energy. Fortunately, the consumption of energy has an enormous potential saving. 

The time series estimates are one of the most important examinations of transient information 
and the expectation of future problems faced by data experts from money and finance into the 
creation of the board or communications broadcast. A measure is expected for certain events 
of the future. The current, med-term and long-term times are often named for forecasting 
problems. Short-term estimates include forecasting periods for a several periods (days, weeks, 
months) in the expectations. The medium-term calculations range from 1 to 2 years and 
long-term prediction problems will stretch for many years [4]. The details on time series data 
can be represented as a set of continuous series of expectations of an excitement element. Most 
approximate problems indicate utilization of these data, which is typically accomplished 
through methods for conventional empirical appliances. The enormous numbers of tests which 
define the time series data in various regions are of exceptional importance for data mining 
procedures [5]. 
The aim of the research is to aggressively consider earlier observations that discriminate 
between data structures that better reflect the internal context used in the system and quantify 
the hidden value of the data generation process [6]. The ARIMA is a remarkable scientific 
technique, generally used in time series, which demonstrates precisely the prediction of 
short-term and transient systems. Based on the time series, the Autoregressive (AR) method 
offers a sufficient illustration of such data generation portion. The assumption of these 
approaches is that knowledge regarding time series data is immediately subject to those prior 
readings from related periods. However, the expected performance of these techniques fails 
for long and complicated time series because the systems imply linear relations and fixed 
time-set properties. The electrical load profile since a large metropolis is based on dynamic 
cyclical and periodic indications defined by the mechanical architecture, human activities, and 
temperature effects. From the previous history, Nonlinear systems do better than linear 
representations, such as moving average (MA) model and autoregressive integrated moving 
average (ARIMA) model [7-9]. Overall, a few methodologies have been proposed to direct 
electrical load using consumer data and machine learning methods to increase the expectation 
of accuracy. However, it requires better load assessment models are still high [10]. 
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In this way, deep learning methods are considered by various researchers late on and have 
shown considerable improvement in multiple domains such as acoustic presentation, image 
recognition, and natural language training. These fundamental systemic changes provide the 
potential for deliberation which enables complex non-nonlinear models [11-12]. In general, 
the recurrent neural network (RNN) is a deep learning method that is precisely designed to 
function overtime series and LSTM is a variation of RNNs [13]. This enables load sustaining 
which is propagated in layers forward and backward. Another variety of standard RNNs gated 
recurrent networks (GRU) which overcome the problem of the evaporated path like the 
LSTMs to show long term arrangements. LSTM and GRUs are innovative strategies to 
illustrate successive details by decoding logical data from previous data sources since they can 
understand complex non-linear instances and ultimately to distinguish the related fields 
[14-15]. Regardless of their popularity, the use of these deep learning models is typically rare 
and affects areas relevant to the Computer in general. One of the key parties which suggested 
an LSTM-based deep learning model-dependent time series data analysis is to determine short 
and medium electric loads. Although the suggested LSTM model decision has been more 
successful than the optional machine learning solution [16-17], the absence in feasibility has 
been exposed and thus a large-scale non-test application does not proceed. Therefore, it 
ignores complicated electric load qualities, related to periodicity, frequency of data, models, 
stages, auxiliary breaks, and timing impacts, which are seen by a time series. Specifically, 
perplexing examples of electrical loads are neglected every day, every week, every month, and 
last year as contributions to the previous LSTM model [18]. It finds only one category of loads 
in the past as the approach to forecasting electrical loads in the short and medium-term. The 
recently proposed model correctly overlooks critical domain details which may impact the 
validity and vitality that are determined [19]. Table 1 shows three categories of studies related 
to the prediction of power consumption. 
A load prediction model based on improved LSTM is proposed, where the periodicity of 
electrical load is taken into account while using multiple sequences as major data sources. So 
as to consolidate the previous measurements of the electrical load used by LSTM are 
integrated, a k-means cluster analysis is developed in data mining operation, for recurrence is 
established and the time lags related to the Multifunctional LSTM are realized. The two deep 
neural networks, LSTM (Long short-term memory) and GRU (Gated recurrent unit), are 
developed for comparison and validation. The results of these experiments indicate that LSTM 
and GRU multi-sequence models predict the other possible methodologies used. Our proposed 
system is follows 
(1) Normalize data and use models based on time series representations to measure standard 
energy consumption for each consumer; 
(2) The K-means clustering is used to divide data into several groups based on the similarity to 
increase the accuracy of the prediction. 
(3) Consumptions within clusters clustering and aggregation. The deep learning prediction 
model is learned for each cluster and the forecasts for the following time are completed; 
(4) Prognosis is paired with actual intake data and compared. Next, a day-ahead forecast for 
the obtained cluster representations using the prediction methods were created. 
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Table 1. Related works on electric energy consumption prediction 

 
Category Reff. No. Year Method Advantages Disadvantages Description 

Statistical modeling 

 7 2017 ARIMA 
Forecasting 
non-stationarity 
short term datas 

No automatic 
updating 

Analysis of linear correlation 
structure based prediction 
performance according to time 
resolution 

 13 2020 ARIMA 
Energy, Finance and Medicine 
long-term and multivariate time 
series prediction 

 12 

2018 

SARIMA 
Household energy consumption 
prediction analysis using single 
and ensemble technique   Linear regression Lower time 

complexity 
Sensitive to 
outliers 

 
10 2018 

FCM 

Decision 
making for 
uncertain 
information 

Cognitive 
uncertainties 

Fuzzy based energy load 
prediction and exception 
calculation 

 PSO Memory 
storage  

local 
minimization 

PSO based Long-Term energy 
load prediction  

 9 2017 Entropy based Less 
complexity 

only short term 
data 

Multiple temporal scales based 
ECG feature extraction 

Spatial information modeling 

 10 2018 ANN 

Unsupervised 
Learning Overfitting 

ANN-based learning technique for 
STLF 

 12 2018 ANN 
Household energy consumption 
prediction analysis using single 
and ensemble technique 

 17 2018 MLP 
Predicting long-term time series 
commercial and residential 
building electricity consumption     SVM Structural Risk 

Minimization 
Parameter 
uncertainty 

 13 2020 SVM   
Energy, Finance and Medicine 
long-term and multivariate time 
series prediction 

 7 2017 SVM Structural Risk 
Minimization 

Parameter 
uncertainty 

Classification technique based on 
statistic learning 

Temporal information modeling 

 13 2020 LSTM 
Non-linear 
function of 
more accurate 

Training time 
is much longer 

Energy, Finance and Medicine 
long-term and multivariate time 
series prediction    GRU Simple linear 

operation 
Add external 
information 

   RNN 
Extract 
temporal 
features 

Continuous 
time 
dependency  17 2018 RNN 

Predicting long-term time series 
commercial and residential 
building electricity consumption  

  16 2019 CNN-LSTM 
Extract 
complex 
features 

Complex 
design 

Household energy consumption 
prediction and feature extraction 
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2. The Forecasting Framework of Proposed Approaches 

The proposed approach consist of three main developments are found in the methodologies 
presented in this article. The model consists of three stages namely data collection, data 
mining, and prediction. In order to calculate the relation between the factors and the 
appliances' energy consumption, the Pearson coefficient is used, and the key highlights of 
appliances energy are divided by the Pearson coefficients. Secondly, the K- means clustering 
technique is often used to separate details in a few clusters which concentrate on the similarity 
of features.  Finally, in each cluster deep learning networks are trained, and the household 
energy is obtained by a combination of the outcomes of the various LSTM and GRU networks 
in the preferred cluster. 

Step 1: In a database for additional evaluation, rough data is collected from each house 
containing a huge amount of vitality records of each unit gadget in relation to time 
arrangement details. 

Step 2: Rapidly, successive mining and grouping trends are carried out in this stage. Frequent 
prototypes are persistent configurations or collections of systems frequently presented in a 
dataset. For example, light and fan are seen continuously, they are seen as a continuous sample. 
The goal is to expose the relationships between appliances and consider the time of use in 
terms of hours and duration for the day, weeks, months and year. Such observed information 
throughout time series data allows it possible for appliance associations to be found by 
clustering of devices over time. Cluster analyses are the method of forming groups where 
cluster members have similarities and discrepancies between clusters and members of other 
clusters. 

The detection of repeated trends and the study of clusters are widely recognized in broad 
datasets as a costly. Similarly, data creation is a continuous process in real-world scenario, 
where new records are created and the old records becomes redundant over time, developing 
new classes of clusters. By this technique, the high resolution energy consumption time series 
data are produced. Accordingly, an incremental and systematic upgrade strategy is necessary, 
taking ongoing data changes into consideration and updated knowledge is used to preserve 
current regular trends and clusters. This goal is accomplished by systematic incremental 
processing of data and removing the need to repeat mining the entire database at frequent 
intervals. For a broad database it is possible to use the sample development method for the 
regular pattern mining, [38, 39] while the cluster analysis can be performed using the k-means 
analyses clustering [40]. Established frequent patterns and clusters are replaced with new data 
during each continuous mining activity and new found patterns and clusters are applied 
gradually to the permanent data base. This methodology minimizes memory overhead and 
increases performance for real-world applications to just a fraction of the entire database at 
each iterating phase. 

Step 3: The design continuously and honestly emphasizes basic knowledge about the laws of 
interaction of computers from ordinary appliances. The probabilistic relationship of devices 
with a different appliance can be defined by usual systems and groups formed. A prediction 
approach focused on deep recurrent neural networks (LSTM and GRU) to handle the complex 
use and viability of devices both for a short term and long-term assessment was used.
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Fig. 1. Proposed Model Flow 

Fig. 1 displays a proposed model that illustrates probable similarities between appliance usage 
and activities. The individual operation of appliances is not only the isolation of human 
movement designs but also the association of appliances; i.e., examples of movements that are 
mixed, e.g. washing appliances after preparation or looking at the TV. The basic concept of 
every model relies on the design pattern growth or frequent pattern development approach, 
using a depth-first divide-and-conquer technique strategy [20-22]. This operation was not 
usually being carried out, but it was detached, which is obviously not applicable to well-being 
applications involving fast dynamic response. 

2.1 Data Preparation 
The raw energy time-series data is a time-scale, converted into energy usage or load data with 
a resolution of 1 minute. It is then converted for the next step of the data mining operation into 
30-minute time-resolution data sources. Therefore, the data reduction is 24 x 2 = 48 readings 
per day per unit, while the period of use, average charge, and energy consumption are reported 
for each active device. The source information for regular pattern mining and cluster analysis 
comprises all appliances reported active during this 30-minute time period. The 30-minute 
time resolution is evaluated and it fits ideally because it accurately measures appliance-time 
and appliance – appliance. This analysis was performed using three datasets (two actual and 
one synthetic). The first actual data collection includes over 5 houses with a timely settlement 
of over 400 million raw energy usage documents. During the pre-processing period, it was 
reduced to just over 20 million without lack of accuracy or exactness. Similarly, from more 
than 21 million raw records, the second actual dataset AMPds2 was reduced to four million 
records [23-24], originally 1-minute duration A simulated dataset of more than 1.2 million 
records for the preliminary assessment have also developed for our model. A collection of 
source data containing four appliances for one home ready to search for regular trends and 
clusters can be found in Tables 1 and 2. 

Finally, the data are recorded continuously; they can also have applications to operate 
electrical systems in real time and to control them. All these factors stress the need to use new 
power consumption clustering methods. The clustering method based on K-means with 
mezoids as a centroid option to classify consumers into groups (clusters) was used. The 
optimum number of clusters K is determined with the Silhouette coefficient for every 
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representation of the dataset. 
 

2.2 Frequent Pattern Mining  
Associations of appliances and appliance-time are important behavioral features of consumer 
energy usage and can define peak load / economic hours of energy use. These correlations 
further describe the behavioral patterns of the respective residents and their predicted comfort 
[25]. With the large amount of data continuous from smart meters collected, it is also of a great 
interest not only for utilities and energy suppliers, but also for customers to draw up such 
regular trends and decision-making clusters such as energy cost containment, managing 
demand responses and energy efficiency strategies. The repeating pattern can be observed in 
recurrent pattern mining carried out through the input data and provided in Table 2: i.e. a 

pattern containing continuously occurring item sets [26]. Let { }1 2, , , kI I IΓ =   be a set of 

items consists of k objects, k-item set ( kI ). Let DB mean a database of the transaction where 

each transaction Y is such that Y ⊆Γ and Y φ≠ . The transaction database is seen in Table 1. 
The item set support amount has been specified as its appearance frequency; i.e., number of 

transactions comprising the item set. Let's set two objects or patterns in ( )X X Y⊆ and 
( )Yϒ ϒ ⊆ . X and ϒ  are called regular patterns because they are more or less equal to their 

respective Xs  and sϒ  support. The minimum assistance threshold is a pre-determined minsup. 
Frequent patterns or typical patterns are processed for the production of association laws, 

extracted by the mining process. The rules of association, with{ }X ⇒ ϒ , are formed through 

support- confidence structures, where Xs ⇒ϒ support is the proportion of transactions 
( )X ∪ϒ in the database and  that can be referred as ( )P X ∪ϒ  probabilities. In the 
transaction database DB, consists of X which includes ϒ ; i.e., conditional probability

( / )P X ϒ , confidence Xc ⇒ϒ , as seen in equation, can also be expressed as the ratio of 
transactions [27-28]. The description of support and confidence is described in equations (1) 
and (2), in both: 

 

                  ( ) ( )Xsupport X s support X⇒ϒ⇒ϒ = = ∪ϒ          (1) 

 

                         

( )( )
( )

support Xconfidence X
support X

∪ϒ
⇒ϒ =

          (2) 
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Table 2. Source Database for Frequent Pattern Mining 
 

Date Start time End Time Active 
appliances 

2/18/2017 6:00 6:15 1, 3, 4,7  
2/18/2017 6:15 6:30 1, 3, 4, 7 

2/18/2017 6:30 6:45 1,3,4,11 
2/18/2017 6:45 7:00 1,3,4 
2/18/2017 7:00 7:15 4 

2/18/2017 7:15 7:30 4,12 
2/18/2017 7:30 7:45 4 

2/18/2017 7:45 8:00 4,13 
2/18/2017 8:00 8:15 1,4,15 

2/18/2017 8:15 8:30 1,4,14 
2/18/2017 8:30 8:45 1,2,3,4 
2/18/2017 8:45 9:00 2,3,4 

2/18/2017 9:00 9:15 4 
2/18/2017 9:15 9:30 4 

2/18/2017 9:30 9:45 4 
2/18/2017 9:45 10:00 3,4 

--- --- --- --- 
 
 
2.3 Cluster Analysis  

Appliance-time relationship comprehension can enable the strategic study of consumption 
energy activity in addition to the introduction of inter-appliance associations. Appliance-time 
associations can be defined in terms of the hour of the day (00:00–23:59), time of day 
(Morning/Afternoon /Night), weekday, week of the month, week of the year, and month of the 
year. Appliance to time comprehension can support critical analysis of consumer energy 
consumption behavior, in addition to exposing the inter-appliance. Based on the hour of the 
day, the week, the month, the year, the Appliance-time associations are being specified. This 
can be calculated in terms of the hour of the day [29]. Looking at device-to-time relations with 
active appliances to create a class or a cluster for the device may be seen as adding a correctly 
adjacent time stamp. The defined clusters identify the relationships of equipment-to-time and 
the size of the clusters, determines the potential strength of the clusters according to the 
membership count [30]. The discovery of appliances-to-time correlations can also be 
translated as clustered devices in time-interval groups; where each cluster is one unit, with 
time-marks as cluster members are shown in Fig. 2. 

The evaluation of clusters is a method for creating data point batches based on results, but not 
externally i.e., the unsupervised classification. The whole extracted data describes the 
interaction between data points and helps to classify data points in order to achieve the data 
points are similar to each other, yet are far from members of all other clusters. “better” and 
“faraway” being association measures which define the near relationship between cluster 
members [31]. Thus, the clustering evaluations performed on Input data provided in Tables 3 
and 4 will produce clusters or groups that describe normal appliance associations in time, 
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whereas the degree of association is specified by support or strength. This appliance to times 
does not only calculate the full load or hours of energy usage but do also shows the behavioral 
characteristics of the residents and customers’ energy use.  

In order to derive device time correlations, one of the most commonly used partial clustering 
concepts was expanded. The cluster prototype is determined by its centroid, and is the mean of 
all the data points of the cluster. In this method, clusters consist of groups without overlapping, 
i.e., each data point belongs to only one group or cluster. In addition, mining was carried out 
gradually. 

 
Fig. 2. Possible Clustering between the Appliance 

 

Table 3. Clustering Source Database-I 

Appliance Hour of the day Time of the day 
TV (2) 11:30 - 12:20 Morning and Afternoon 
Washing machine (5) 10:15 - 11:10 Morning 
Water pump (7) 10:00 - 10:25 Morning 

Music Systems (11) 14:25 - 16:15 Afternoon and Evening 

 

Table 4. Clustering Source Database-II 

Appliance Days week Month 
TV (2) 267 38 All 
Fan (3) 186 26 All 
Washing machine (5) 98 14 All 
AC (6) 46 6 3,4,5 
Water pump (7) 136 19 all 

 
An initial perspective on the clustering of k-means centroid [32-33] have been considered. The 
data clusters of the data dataset DB, which has n data points on the Euclidean, are allocated by 
partial clusters to a k number of clusters, 1 2, , , kC C C , which have centroids 1 2, , , kc c c , 

so that the data are iC DB⊂ , i jC C φ∩ = and i jc c≠ to (1 , )i j k≤ ≤ . The Equation (4) 
represents the objective function based on the Euclidean distance to calculate the consistency 
between data points that exhibit the quality of cluster.  The objective function is defined as 
squared error sum (SSE), defined in Equation (3), and the SSE is reduced to a minimum with 
the k-means clustering algorithm. 

Activity

Individual Appliances Washing Machine Nespresso TV Laptop Light Microwave Computer

Relaxing StudyPreparing Breakfast •••••••

Home Theater

••••
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2

1
( , )

i

k

i
i d C

SSE distance d C
= ∈

=∑∑     (3) 

2( , ) ( )j j
j

distance x y x y= −∑    (4) 

The properties of the individual object where xj and yj are, and j ranges from 1 to n. The 
k-means start from database by selecting k data points, where k ≤ n and k clusters are generated 
with centroids.  Then, a cluster with a less Euclidean distance (ci) from its centroid, distance (d, 
ci) will be allocated to any of the remaining d data points in DB. Only the updated cluster 
centroids are evaluate by computing the cluster center used for clusters after a new data object 
has been allocated, along with the k-means algorithm modifies the cluster structure regularly, 
thereby minimizing intra-cluster inequalities through reallocating the data points before 
clusters will be balanced [34]. During the measurement, any update is not possible by the 
estimation in sum of the squared error (SSE) from its centroid covering all cluster data points. 
 
2.4 K-Means Clustering Algorithm 

Original centroids are spontaneously calculated by using K-means. The following steps are: 

(1) Evaluate the value of k, where k is the number of clusters that are needed. 

(2) Original centroids are determined. The centroid is randomly allocated from current results, 
and the number of clusters equals the original centroid number. 

(3) Measure the distance to a centroid by using the Euclidean Distance Function, in the nearest 
centroid of each data point. 

(4) Minimum distance clustering of results. If it is the nearest from its cluster base, a data point 
would be part of a cluster. 

(5) Identify new centroid data centers for each cluster based on average results. 

(6) Repeat step 3. 

(7) Stop if the cluster assignment does not alter results. 

Fig. 3 illustrates the flow chart of the K-means algorithm. In this research, the data used were 
a collection of electricity building data, and the input vector form had time-specific 
characteristics. For forecasts, data from time series are typically used. For building appliance 
energy prediction used time-series data [35]. The clustering of time series is split into two 
groups: first the model or feature, and the raw data. In a feature clustering process, the raw data 
are compiled, converted, or converted using feature elimination or parametric models, e.g., 
dynamic regression, ARIMA, machine learning, and deep learning models to promote 
clustering [36-37]. The clustering raw database relates clearly to time-series vectors before the 
clustering step without any spatial transformations. A raw data-based clustering for the 
process was employed. 
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Fig. 3. K-means Clustering Algorithm Flow Diagram 

 
2.4.1. Optimal k-means: Determining k using Silhouette coefficient 
The cluster quality is assessed by analyzing intra-cluster cohesion and inter-cluster separation 
of data points. A coefficient of silhouettes which is based on the Euclidean length is exploited 
to assess an optimum number of clusters. The silhouette coefficient indicates "How well 
clusters are constructed," measuring the degree of similarity and differences. As defined in 
equations (5) to (9), the silhouette coefficient can be calculated.  
• Compute average distance aj to all other data points of dj in cluster Ci 

( ){ },j j ia average distance d d=
      (5)

 

where, 1 2( , , , );i n i jd d d d d d= ≠  

• Compute Average distance of dj  to all other data points in clusters Ci, having i j ; 
Determine  bj= minimum(bj) across all the clusters except Ci. 

( ){ }/,
xj j i Cb average distance d d=

     (6)
 

where, 1 2( , , , )i nd d d d=  and ( 1, 2, , );x x iC C C Cn C C= ≠  

• Compute Silhouette coefficient for dj 

( )
( , )j

j j
d

j j

b a
S

maximum b a
−

=
      (7) 

 

Start

Enter no. of clusters

Enter no. of iterations

Calculate initial 
centroids

Calculate distances

Clustering of the 
objects

Recalculate centroids

Update 
appliances End

Yes No
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• Compute Silhouette coefficient for cluster Ci 

1( )
i jC d nS average S for j d d= = 

      (8)
 

• Compute Silhouette coefficient for clustering, having k clusters 

( ) 1
ik CS average S for i k= = 

      (9)
 

The coefficient in silhouette may range from -1 to 1. In cases where the negative value shows 
that the average distance of a data point from a data point to a data point in cluster Ci (ai) is 
greater than the average di to a cluster of data points other than Ci (bi) and there are better 
clusters. Overall cluster quality can be measured by calculating the Silhouette average 
coefficient by computing the silhouette average for all cluster member data points (Silhouette 
width) in equation 9. In the final analysis, the quality analysis process for formed clusters is 
repeated, where n is the unique database/dataset data point set, while the silhouette (silhouette 
width) is computed, and k is chosen with the highest Silhouette width. 
 
2.5 Forecasting Methods 

The sequential information where the output depends not only on the present inputs but also on 
the previous inputs are used by a Recurrent neural network. It is called recurring with each 
variable throughout the data sequence, the data is similarly processed. Owing to the internal 
memories, RNNs may recall essential inputs and thus desired data for time series. However, 
the RNNs model stops learning when the values of the gradient become too small because of 
the absence of the gradients problem. The RNN setup here on input sequence, where the input 
is xt and the hidden state of st is at step t, and is the network memory, is seen in Fig. 4. The 
problem of vanishing gradients affects regular RNNs, since the gradients are becoming 
smaller over time as the system step back. In contrast to the subsequent layers in the system, 
neurons in previous layers thus grow very slowly. This complexity of gradient propagation is 
analyzed by LSTMs and GRUs [38-39]. The input, forget and output portals that decide when 
new information is introduced to the cell state, extracted from the memory and output port to 
decide how it is extracted from the memory were implemented. The information flow and 
gates set inside the LSTM cells are seen in Fig. 5. 

 

 
 

Fig. 4. Unfolding during the RNN network estimation 

Ot-1 Ot+1Ot

St-1 St+1St

xt-1 xt+1xt
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Fig. 5. Data flow in the RNN LSTM block 
 

LSTM cell gates minimize the probability that gradients may disappear and support the 
learning for long-term dependency [40]. Such gating function allows a great deal of control 
about what the LSTM cell recalls, forgets and maintains its internal cell memory successfully 
over time. Using a recurring function as defined in equation (10), the input sequence of the 
LSTM model is {X1, X2, ... ,Xn}. 

1( , )t t th f h x−=         (10) 

Where xt is the input and ht is the hidden state. In order to solve the problem of the loss of blast, 
gates are placed into the recurrence function f. LSTM cell states are determined accordingly 

[ ]( )1,t i t t ii W h x bσ −= +

      (11)
 

[ ]( )1,t f t t ff W h x bσ −= +

      (12)
 

[ ]( )1,t o t t oo W h x bσ −= +

      (13)
 

[ ]( )1tanh ,C t t CC W h x b−= +



      (14)
 

1t t t t tC f C i C−= + 

         (15) 

tanh ( )t t th o C=         (16) 

where it,is the input gates, ft, is the forgot and ot is the output gates.  Ws represents weights and 

bs represents the bias of the LSTM unit parameters and the existing cell status is labeled as Ct 

and new cell status of the claimant are labeled as Ce. Three sigmoid functions, it, ft, and ot gates, 

are expressed in equations (11) to (13). Owing to the xt input and the previous ht-1 output, the 

three gates obstruct the signal or pass it over. The signals are blocked, specifically unless the 

ht

Ct-1
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it ot
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signals are blocked, unless the gate is 0. The forget gate ft calculates the previous output ht-1 

which are allowed to move through the gate. The input gate it to change the cell state 

determines the data and the output gate ot specifies the cell status of the output. Equation 15 

transfers the current cell state Ct with the existing cell state Ct-1. A hyperbolic-tangent function 

defined by equations 14 and 16 respectively calculates the new candidate values C  of a 

memory cell as well as the output of the current LSTM block ht. Each stage is immediately 

passed to the next cell by the two states C and ht. The weights W’s and biases b’s are 

established while minimizing the variations between the LSTM outputs and the 

actual training samples GRU's configuration is similar to an LSTM cell, but it only has 

two gates, namely update, reset, and gates. GRU is a popular version [39]. As seen in Fig. 6, 

the model is easier and is therefore computationally quicker than typical LSTM models. Just 

as with LSTM, it is easier to train as fewer calculations are needed for updating the hidden 

state due to the simple internal structure. In dynamic modeling scenarios, specially qualified 

GRU can perform exceptionally well. 

 
Fig. 6. Information flow in GRU block  

 
Update gate z, reset gate rt and cell states ht and ℎ𝑡𝑡�  for GRU are computed using the 
following equations (17) to (20): 

[ ]( )1,t z t tz W h xσ −=         (17) 

[ ]( )1,t r t tr W h xσ −=         (18) 
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[ ]( )1tanh ,t t t th W r rh x−=         (19) 

1(1 )t t t t th z h z h−= − + 

        (20) 

 
2.6 Performance Metrics for Evaluation 
 
The four types of measurable standards are used to statistical evolution of time series models' 
precision in prediction.  Root Mean Square Error (RMSE), accuracy, R-square (R2) is the 
relevant factor test and is a regression model that discusses to the amount of the statistical 
difference/variance of an indigenous required attribute, Mean Absolute Error (MAE), and a 
mean of the value of total estimates/mean of the total estimates for the naive model is known 
as Relative Mean Absolute Error (RMAE) [41]. In accordance with equation (21) to (24), the 
four criteria for performing tests used in this investigation can be identified. 
 

( ) ( )( )
( ) ( )2 22 2

n ab a b
R Squared

n a a n b b

−
− =

   − −      

∑ ∑ ∑
∑ ∑ ∑ ∑

   (21)

 

( )2

1

n

ft rt
t

x x
RMSE

n
=

−

=
∑

       (22)
 

1

n

ft rt
t

x x
MAE

n
=

−
=
∑

        (23)
 

1

1

n

ft rt
t

n

rt
t

x x
RMAE

x

=

=

−
=
∑

∑
        (24) 

 
3. Results Analysis and Discussion 

The findings of the processing of 25% of data from the independent data collection for both 
houses 4 and 5 are seen in Table 5. The appliances such as Lights, TV (Television), Fans, 
Refrigerator, washing machine, Air conditioner, Water pump (Laptop, Smartphone, Music 
systems, and so on) have been taken into consideration. Through these affiliations, the 
community will produce daily family behavioral applications that are high- and low-powered 
(kW) appliances; however, due to the extremely extensive usage of house 4, they have 
tremendous energy impressions. Huge appliances, including washing machines and water 
pumps with periodically reduced energy measurements, do not usually cause higher power 
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costs. Machines are often unreasonably used by customers because of their behavior. They are 
also blamed for this. The actual energy use and long-term energy supply against true energy 
use in Home 4 are seen in Fig. 7, with expanding usage on Sundays and during the late spring 
season, and in Fig. 7. 

 

 
Fig. 7. Energy utilization of appliance-day during the week 

 
 

Table 5. Appliance - day during the week 
Date 4/21/2019 4/22/2019 4/23/2019 4/24/2019 4/25/2019 4/26/2019 4/27/2019 

Lamps (kW) 0.023 0.043 0.031 0.047 0.036 0.031 0.032 

TV (kW) 0.043 0.067 0.054 0.071 0.045 0.042 0.044 

Fans (kW) 0.051 0.082 0.079 0.093 0.065 0.069 0.097 

Refrigerator(kW) 0.046 0.062 0.057 0.059 0.059 0.054 0.05 
Washing machine 
(kW) 0.087 0.074 0.084 0.056 0.079 0.057 0.019 

Air conditioner (kW) 0.044 0.127 0.133 0.148 0.093 0.048 0.082 

Water Pump (kW) 0.078 0.078 0.107 0.198 0.069 0.063 0.077 

Misc. (kW) 0.05 0.069 0.027 0.071 0.025 0.05 0.028 

 

The changing effect of time, days and months on appliance use on the basis of appliance 
behavior was found. Fig. 8 shows the associations of appliance-time found. The cluster 1 with 
the highest concentration of clusters 2 appliances, such as water pump or washing machine 
between 11:30 and 13:00, and between 18:00 and 21:00, which are expanded in one single day 
was found. Cluster 1 has the lowest energy consumption in TV, music, and diversity products. 
The same frequency throughout the day with large usage concentration of Cluster1&2 devices 
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increased energy consumption during the day. The number of clusters generated during the 
data mining process is listed in Fig. 9 and further supports the invention of associations of 
appliance time that replicate the behavior of the appliances over a period of time. 

 
Fig. 8. Appliance-time associations @ hour of day 

 
 

 
Fig. 9. Number of clusters discovered vs dataset mining. 
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Fig. 10. Home 4 energy consumption prediction vs. actual energy 

The energy prediction of house_4 in short and long term is presented and compared in Fig. 10. 
As well as the average averages of 25 %, 50% and 75% of incremental data mining approaches, 
Table 6 displays the short- and long-term prediction accuracy achieved. Our suggested model 
will at any stage in a period be above CNN, LSTM and GRU achieve a combined precision in 
97.42% (25%), 99.07% (50%) of all training, 99.61% (75%) of all. In Fig. 11 (a), The gradual 
mining can identify varieties that are driven by the residential behavioral characteristics and 
encourage highly skilled efficient use of resources at various speeds. This is a general 
overview of the proposed model versus CNN, LSTM, and GRU. Fig. 11 (b) provides a 
correspondence of training data set 25%,50% and 75% between the proposed model and CNN, 
Sequential and LSTM. 

 
Table 6. Prediction model accuracy 

 
Training CNN LSTM GRU 

25% Data Training Accuracy 

 0.9302 0.9515 0.9742 

50% Data Training Accuracy 

 0.9413 0.9743 0.9907 

75% Data Training Accuracy 

 0.9479 0.9799 0.9961 

Overall Training Accuracy 

  0.9398 0.9685 0.987 
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                (a) Overall Prediction Accuray            (b) Prediction accuracy @ data set 25, 50 and 75% 

Fig. 11. Comparison of prediction accuracy 

Table 7. Prediction accuracy @ household level 

Long Term R-Squared RMSE MAE medAE Accuracy 

25 % Data as Training Data 

CNN 
Home 1 0.488394 0.404559 0.330852 0.27485 0.9362 
Home 2 0.527916 0.37819 0.311093 0.266756 0.9241 

LSTM 
Home 1 0.215022 0.501121 0.421199 0.394857 0.9549 
Home 2 0.092536 0.524343 0.442557 0.420795 0.9481 

GRU 
Home 1 0.103503 0.535535 0.45982 0.473143 0.9745 
Home 2 0.301156 0.460141 0.38043 0.342626 0.9738 

50 % Data as Training Data 

CNN 
Home 1 0.265177 0.494367 0.411117 0.376486 0.9417 
Home 2 0.265528 0.490907 0.410766 0.368873 0.9408 

LSTM 
Home 1 0.112879 0.543187 0.462083 0.453552 0.9673 
Home 2 0.094203 0.545164 0.461476 0.4664 0.9812 

GRU 
Home 1 0.098269 0.547642 0.470408 0.454947 0.9887 
Home 2 0.124243 0.536048 0.451231 0.430627 0.9926 

75 % Data as Training Data 

CNN 
Home 1 0.237057 0.497204 0.415144 0.378056 0.9482 
Home 2 0.182011 0.503956 0.418736 0.385433 0.9476 

LSTM 
Home 1 0.17623 0.516644 0.433257 0.401592 0.9769 
Home 2 0.072268 0.536699 0.443885 0.428286 0.9828 

GRU 
Home 1 0.16701 0.519528 0.436487 0.410718 0.9985 

Home 2 0.174758 0.506186 0.41792 0.380161 0.9937 
 

In Table 7, the various parameters of accuracy as R-squared, RMSE, MAE, and MedAE in 
each model, and compared at the current family level. Therefore, to approximate the house 
energy consumption excepted, the findings were applied with various system requirements. 
The output value reached 98.71% exactness 99.16%, 97.52%, and 96.37%, time @hour, long 
term @day, long-term @week, and long-term @month energy usage predictions separately. In 
addition, in this analysis, Jian Qi Wang, Federico Divina, Salah Bouktif and Jui-Sheng Chou, 
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compared with the proposed LSTM and GRU models, indicates error accuracy parameters in 
Table 8. These assumptions by residents impact the option of energy usage examples that are 
translated into energy usage straightforwardly. Certain criteria depend on the way of life, the 
product of the occupant's behavioral features as well as the comparison of individual choice, 
are critical to the design of a successful energy environment which encourage consumers to 
engage in the energy use behavior of different occupants. 

Table 8. Performance analysis 

Reference Year Model R-Squared RMSE MAE medAE Accuracy 
Jian Qi Wang [41] 2020 LSTM - 1.8118 1.4215 10.815 - 
Federico Divina[36] 2019 NN - 0.54 0.46 - - 
 

 
Ensemble - 0.65 0.53 - - 

 
 

XGBoost - 0.55 0.47 - - 
Salah Bouktif[6] 2019 ANN - 725.89 559.63 - - 

  
Random 
Forest - 527.25 368.91 - - 

  XGBoost - 440.16 311.43 - - 
Jui-Sheng Chou [12] 2018 ANN 0.556 0.092 0.057 36.83 - 
  Ensemble 0.607 0.094 0.049 42.31 - 
Proposed 

 
LSTM 0.124249 0.526672 0.4386 0.414 96.85 

    GRU 0.170884 0.512857 0.3954 0.037 98.7 

 

4. Conclusions and Future Work 
 
This research describes the influence of consumers' behavior and their particular preferences 
on reasons to use energy that can be taken from appliances time associated with time series for 
energy. These examples can promote realistic, cost-saving plans for purchasers, gracefully 
balance vitality and ask for advances in reservation and assignment, plan vitality purchasing 
arrangements and maintenance schedules, and more thoroughly coordinate the skilled 
formation and essential arrangements of the system. This paper also introduced incremental 
frequent mining and estimation models by k-means clustering. Qualitative and quantitative 
research using time periods like 15 minutes, 30 minutes, 1 hour, and 12 hours have revealed 
results that actively support our approach to constant mining. The proposed model is evaluated 
using genuine data sets for valuable energy scheduling. It was also noticed that the CNN, 
LSTM, and GRU networks were provided a deep learning ability. This approach to deep 
learning can be used to forecast the potential use of resources with greater detailed comparison 
and various models. The results show that the model RNN-GRU efficiently and steadily 
predicts residential electricity demand and shows the good performance compared 
with current standards. The variable that affects the forecast is also explained. 
 
1) To estimate electricity, use in real residential homes, a network of RNN-GRUs of a stable 
rating of accuracy 98.7 % was proposed. 
2) In all cases of minute, hourly, daily and weekly unit resolution, our model forecasts 
complex electricity consumption with the highest level of performance compared to other 
methods. 
3) Analyzing the method proposed and finding water pump, washing machine and air 
conditioner variables that exhibit the greatest impact on the forecast model. 
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The performance metrics like RMSE and MAE respectively 0.512857 and 0.3954, the 
proposed model of RNN-GRU had a significant prediction limit on the other technique. Per 
year between 2017 and 2020 the expected efficiency of power usage rises by 9.27 percent. In 
this research, the residential buildings' energy use in building 4 is projected to be reasonable 
between 8.2 and 61.8 kW. In future, to learn and develop from significant numbers from the 
time series of energy big data from individual homes was proposed. It is also intended to 
develop in the future and learn without ceasing about big data from the timing of energy from 
individual homes. This enables providers to perform an online/nonstop vitality assessment and 
directly attract consumers after changes in uses are known by wonderful industries, which 
preserve their energy. 
Further, the proposed model is evaluated and is trying to make it realistic by bringing in 
real-time big data mining of time series from multiple houses. This will assist the energy 
providers to develop real time online energy prediction solutions to manage better for the 
dynamic smart grid Techniques. 
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Nomenclature 
 
CNN - Convolutional Neural Networks 
RNN - Recurrent Neural Networks  
LSTM - Long Short Term Memory 
GRU - Gated Recurrent Unit 
AR - Autoregressive 
MA - Moving Average 
ARIMA - AutoRegressive Integrated Moving Average 
SSE - squared error sum 
RMSE - Root Mean Square Error 
MAE  - Mean Absolute Error 
RMAE - Relative Mean Absolute Error 
ϒ - Patterns 

Xc ⇒ϒ - Confidence  
C - centroids 
d - distances 
aj - average distance 

jdS - Silhouette coefficient 
Ci - Cluster  
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X - Input sequences 
ht  - hidden state 
Ws- Weight 
bs- Bias 
Ct  - current cell state  
C  - New candidate values 

tz  - Update gate 

tr  - Reset gate  

th  - Cell states 
kW – Kilowatt 
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